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A new dynamic adaptive grid algorithm has been developed for use in air-quality
modeling. This algorithm uses a higher order numerical scheme—the piecewise
parabolic method (PPM)—for computing advective solution fields, a weight func-
tion capable of promoting grid node clustering by moving grid nodes, and a con-
servative interpolation equation using PPM for redistributing the solution field after
movement of grid nodes. Applications of the algorithm to model problems show
that the algorithm provides solutions more accurate than those obtained with static
grids. Performance achieved in model problem simulations indicates that the algo-
rithm has the potential to provide accurate air-quality modeling solutions at costs that
may be significantly less than those incurred in obtaining equivalent static grid solu-
tions. c© 2000 Academic Press
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1. INTRODUCTION

The physical and chemical processes responsible for air pollution span a wide range
of spatial scales. For example, there may be point sources, such as power plants, that
are characterized by spatial scales relatively small compared to regional-scale pollutant
plumes from such sources. Therefore, to accurately model the transport and chemistry of
air pollutants, an air-quality model (AQM) must be able to adequately resolve the pertinent
spatial scales. This can be achieved by varying the physical grid node spacing in an AQM
to provide resolution where needed.
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One approach to achieving increased local solution resolution involves using embedded
Cartesian grids, or static nested grids, such as those described by Odman and Russell
[1] and Odmanet al. [2]. This approach may be limited by (1) the uncertainty in nested
grid(s) placement(s) since pertinent locations may not be known a priori, (2) the loss in
solution accuracy resulting from grid boundary interface problems, and (3) the inability to
adjust rapidly to dynamic changes in solution resolution requirements. Another approach
to achieving local solution resolution involves using grids with moving nodes, i.e., dynamic
adaptive grids. In principle, such grids would be continuous and would adjust dynamically
to changing solution resolution requirements. Therefore, use of such grids would not be
constrained by the limitations associated with use of nested grids.

Recently, ideas promoting use of dynamic adaptive grids in atmospheric modeling have
gained popularity. Dietachmayer and Droegemeier [3] use a variational formulation of
adaptive grid generation equations to compute solutions to test problems. Almgrenet al.
[4] have used a nested hierarchy of grids, with simultaneous refinement of grids in both
space and time, to resolve the release of hot gas into the atmosphere. Skamarock and
Klemp [5] have used a hierarchical grid approach to model a compressible formulation of
the atmospheric flow equations. Tomlinet al. [6] have investigated the use of an adaptive
unstructured grid method to obtain solutions of test problems of interest in air-quality
modeling.

A grid adaptation algorithm for aerospace applications has been developed by Benson
and McRae [7–9]. This algorithm, called theDynamic Solution Adaptive Grid Algorithm
(DSAGA), uses weight functions constructed from the absolute values of the gradients of
solution variables, along with acenter-of-massscheme, to move grid nodes. These nodes are
repositioned in a parametric space to avoid the potential for grid-line cross-over. After the
repositioning of grid nodes, solution variables are corrected. This correction is completed
using an equation that is obtained by splitting the time-dependent terms describing the
movement of the grid nodes from the steady terms of the general conservation laws for
moving control volumes. DSAGA has been used to compute unsteady, three-dimensional,
turbulent, viscous flows [10–12]. Additionally, Srivastavaet al. [13] have used DSAGA
to compute test cases of interest in air-quality modeling. Recently, Laflin and McRae [14]
and Laflin [15] have developed theSolver-Independent, Efficient r-Refinement Algorithm
(SIERRA) that provides robust and computationally efficient implementation strategies for
grid adaptation algorithms. SIERRA incorporates a solver-independent weight function and
a solver-independent solution field redistribution procedure.

This paper describes a new dynamic adaptive grid algorithm suitable for use in AQMs.
This algorithm was built on the foundation provided by the DSAGA algorithm of Benson
and McRae [7–9]. However, the new algorithm extends the DSAGA framework by utilizing
thepiecewise parabolic method(PPM) developed by Collela and Woodward [16] for com-
puting the advective fluxes and the fluxes resulting from grid movement. Moreover, the new
algorithm incorporates the SIERRA weight function and solution field redistribution pro-
cedure. This new algorithm is called theDynamic Solution Adaptive Grid Algorithm–PPM
(DSAGA–PPM) [17].

Given a fixed number of grid nodes, DSAGA–PPM can determine automatically an
appropriate spatial distribution of these nodes and can update this distribution in response
to changes in the evolving numerical solution. Thus, this algorithm can adequately resolve
any evolving solution features. In general, to provide a given level of solution accuracy,
DSAGA–PPM would require fewer grid nodes than uniform or embedded grids since it
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would cluster most of the grid nodes around solution features needing refinement and use
few grid nodes elsewhere. DSAGA–PPM can distribute grid points in all grid directions
simultaneously and can be applied to steady or unsteady flows and maintain temporal
accuracy.

Following the description of DSAGA–PPM, this paper examines its ability to calculate
accurate solutions. For each of the test problems, results were obtained using DSAGA–
PPM and the correspondingStatic Grid Algorithm–PPM(SGA–PPM), which is obtained
by deactivating the grid adaptation procedures in DSAGA–PPM. These results are compared
to reveal the advantages of using DSAGA–PPM. The SGA–PPM solutions are obtained on
a uniformly spaced grid that is identical to the starting uniformly spaced grid used in the
corresponding DSAGA–PPM application.

2. GOVERNING DIFFERENTIAL EQUATIONS

Before describing DSAGA–PPM, it is useful to review the theoretical foundations of
air-pollution modeling. McRaeet al.have provided a comprehensive review of this subject
[18]. A summary of this review is presented in this section.

In an arbitrary, time-varying, spatial regionÄ(t), located in the Euclidean spaceE3 and
bounded by∂Ä(t), a spatial point is given byX = {x, y, z} ∈ Ä(t). InÄ(t) the conservation
of mass for each ofN chemical speciescl (X, t), l = 1, . . . , N is expressed as

∂cl

∂t
+∇ · (Vcl ) = ∇ · (K · ∇cl )+ Rl (c1, . . . , cN)+ Sl (X, t); l = 1, . . . , N. (1)

In (1) cl is the mass concentration of pollutantl (mass of pollutantl /volume of air);
V(X, t) = (u, v, w) is the specified wind field;K is a second-order, diagonal, turbulent
diffusivity tensor;Rl is the net generation of chemical speciesl by chemical reactions; and
Sl is the rate of source addition for the chemical speciesl . The system of equations (1) is
referred to asthe atmospheric diffusion equation[18] and constitutes the governing system
for an AQM.

The atmospheric diffusion equation is solved with specified initial and boundary con-
ditions. For each of speciescl , an initial distributioncl (X, 0) is specified and conditions
at the boundary are imposed by inhomogeneous mixed Neumann and Dirichlet boundary
conditions. A discussion of the initial and boundary conditions can be found in Srivastava
[17] and Reynoldset al. [19].

In air-pollution modeling, (1) and the associated initial and boundary conditions are ap-
propriately transformed to accommodate the resolution of meteorological (boundary layer,
cloud) and geographical (topography) features. Discussions of the various transformations
can be found in Kasahara [20], Toonet al. [21], and McRaeet al. [18]. Since the purpose
of this paper is to illustrate the applicability of DSAGA–PPM to air-pollution modeling via
model test problems, such transformations are not examined herein.

3. DSAGA–PPM

DSAGA–PPM includes the finite-volume procedures for advancing the governing system
(i.e., Eq. (1) and the associated initial and boundary conditions) in time using a non-
uniform grid, for moving the grid nodes to region(s) requiring solution refinement, and
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for conservatively redistributing the solution field over the resulting adapted grid. These
procedures are briefly described below. Details of these procedures can be found in [17].

3.1. Time Advancement of the Governing System

In the AQMs based on finite-volume methods, the governing system, with transformed
vertical coordinate, is usually advanced in time on static Cartesian grids with uniform
spacing in the horizontal plane and non-uniform spacing in the vertical direction. However,
in general, a grid adapted by moving nodes will not be uniform. Therefore in DSAGA–PPM,
a coordinate transformation is applied to the governing system to relate the physical domain
expressed in Cartesian coordinates(x, y, z) to a computational domain expressed in general
curvilinear coordinatesξm,m= 1, 2, 3. The grid in the general curvilinear coordinates is
assumed to be uniform and unit-spaced. This procedure allows the solution of the governing
system to be obtained on arbitrary physical grids (i.e., grids that are curved in space and are
aligned to shapes of existing solution features). The mapping between the two coordinate
systems is given by

ξm = ξm(x, y, z); m= 1, 2, 3. (2)

As discussed in Roache [22], in general, the most accurate numerical results are obtained
if numerical differencing is based on the conservative form of the governing equations.
Methods for manipulating partial differential equations that preserve conservative properties
are described in Andersonet al. [23], Oberkampf [24], and Vinokur [25]. Using these
methods, the conservative form of the transformed atmospheric diffusion equation is given
by

∂ ĉl

∂t
+ ∂ Êm

l

∂ξm
= R̂l + Ŝl ; l = 1, . . . , N, m= 1, 2, 3, (3)

where

ĉl = cl

J
, l = 1, . . . , N (4)

Ê1
l =

(
ξ1

x El + ξ1
y Fl + ξ1

z Gl
)

J
, l = 1, . . . , N (5)

R̂l = Rl (c1, . . . , cN)/J, l = 1, . . . , N (6)

and

Ŝl = Sl (X, t)/J, l = 1, . . . , N (7)

with El = cl u− Kxx
∂cl
∂x , Fl = clv − Kyy

∂cl
∂y , andGl = clw − Kzz

∂cl
∂z for diagonalK . The

expressions for the JacobianJ and the metrics of the transformation (2) are available in
[23].

In general, Eq. (3) represents a system of stiff partial differential equations since the
time scales associated with typical chemical transformations are far smaller than those
associated with transport due to advection and turbulent diffusion. Therefore decoupling
transport and chemistry and solving for these processes in sequential steps result in more
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efficient computation of transport. As discussed in [18], Eq. (3) is operator- (or time-) split
[26] to compute transport, chemistry, and source processes in sequential steps. The splitting
of Eq. (3) is not unique and differs between AQMs. The splitting sequence used in this
work is

cl (t +1t) = Lcl Lsl Ldiff Ladvcl (t), l = 1, . . . , N (8)

cl (t + 21t) = LadvLdiff Lsl Lcl cl (t +1t), l = 1, . . . , N (9)

where

Ladv=
[

I + dt · J ∂

∂ξm

((
ξm

x (−u)+ ξm
y (−v)+ ξm

z (−w)
)/

J
)]

(10)

Ldiff =
[

I + dt · J ∂

∂ξm

((
ξm

x

(
Kxx

∂cl

∂x

)
+ ξm

y

(
Kyy

∂cl

∂y

)
+ ξm

z

(
Kzz

∂cl

∂z

))/
J

)]
(11)

Lsl = [ I + dt · Sl (X, t)] (12)

Lcl = [ I + dt · Rl (c1, . . . , cN)]. (13)

The splitting defined by the relations (8) and (9) is symmetric and, as explained in [18], is
second-order accurate.

The remainder of this section develops the application of DSAGA–PPM to the atmo-
spheric diffusion equation in two dimensions only. Application of this algorithm to the
atmospheric diffusion equation in three dimensions would be a logical extension of the
procedures presented in the following sections.

Calculation of two-dimensional advective transport.The finite-volume representation
of the advection component of (3), with splitting (8) and (9), can be used to compute
two-dimensional advection att +1t as follows:(

c̄n+1
l V

)
i, j −

(
c̄n

l V
)

i, j +1tadv
(
Êadv

l

∣∣
i+1/2, j − Êadv

l

∣∣
i−1/2, j

+ F̂adv
l

∣∣
i, j+1/2− F̂adv

l

∣∣
i, j−1/2

)n = 0. (14)

In the above equations,̄cl is the average concentration of chemical speciesl in cell volume
Vi, j and Êadv

l and F̂adv
l are the net mass effluxes due to advection at cell sidesi ± 1/2, j

and i, j ± 1/2, respectively. The time step for advection,1tadv, is bounded by stability
considerations [17]. In a finite volume formulation, the JacobianJ is simply the ratio of the
volume of the computational cell to the volume,V , of the corresponding physical cell. In the
computational domain, the grid is chosen to be uniform and unit-spaced for convenience.
Consequently, the volume of each computational cell is unity and the Jacobian for each cell
becomes1

V . Note that in two dimensions,Vi, j , is the area of the celli, j .
In air-quality simulations, mass conservation of species, monotonicity of the solution

fields, and a high order of accuracy need to be maintained during numerical computations.
Thepiecewise parabolic method(PPM)—a numerical scheme for computing advection—
is monotonic, is third-order accurate for variable grid spacing, and is conservative [27].
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Therefore, the PPM scheme is used to compute the fluxesÊadv
l andF̂adv

l required in (14). The
PPM scheme, developed for modeling fluid flows with strong shocks and discontinuities, is
a higher order extension of Godunov’s method and uses a parabola as the basic interpolation
function in a finite-volume formulation [16]. A comparison of several popular advection
schemes, including the PPM scheme, can be found in Odman and Russell [28].

In any two- or three-dimensional finite-volume scheme, numerical sources may result
from errors in differencing of the metrics. As discussed in Hindman [29], such sources could
affect solution quality significantly. To determine the presence of such sources, theuniform
flowtest has been used by Pulliam and Steger, Thomas and Lombard, and others [30–32]. In
this test, each of the dependent variables is initialized with a constant value over the entire
grid and then the solution is advanced through one time step with the boundary values
fixed. If the numerics are consistently formulated, then the solution after the end of the time
step must equal the initial conditions. As discussed in Gielda and McRae [33], an analytical
analysis of discretized difference equations, conducted using uniform flow conditions, yields
any numerical sources resulting from the difference algorithm. Subsequently, these sources
are eliminated by adding terms equal to the negative of the numerical source terms to the
difference equations. In DSAGA–PPM, this procedure was used to eliminate the advective
numerical sources, as described below.

For a flow with uniform (or constant) dependent variablescl , the PPM scheme reduces
to the first-order upwind scheme since each cell now has constant (instead of parabolic)
profiles of the dependent variables. Expanding (14) for constantcl ,

c̄(n+1)
l

∣∣
i, j = c̄n

l

∣∣
i, j −

1tadv · c̄n
l

∣∣
i, j

Vi, j
×
[(
ξ1

x

J
u+ ξ

1
y

J
v

)
i+1/2, j

−
(
ξ1

x

J
u+ ξ

1
y

J
v

)
i−1/2, j

]n
−
1tadv · c̄n

l

∣∣
i, j

Vi, j

×
[(
ξ2

x

J
u+ ξ

2
y

J
v

)
i, j+1/2

−
(
ξ2

x

J
u+ ξ

2
y

J
v

)
i, j−1/2

]n

. (15)

Upon inspection of the above equations for constant dependent variablescl , the numerical
source term is identified to be

−
1tadv · c̄n

l

∣∣
i, j

Vi, j

[(
ξ1

x

J
u+ ξ

1
y

J
v

)
i+1/2, j

−
(
ξ1

x

J
u+ ξ

1
y

J
v

)
i−1/2, j

]n

−
1tadv · c̄n

l

∣∣
i, j

Vi, j

[(
ξ2

x

J
u+ ξ

2
y

J
v

)
i, j+1/2

−
(
ξ2

x

J
u+ ξ

2
y

J
v

)
i, j−1/2

]n
. (16)

Subsequently, the negative of this term is added to (14) to eliminate numerical sources.
It should be noted that (16) is a discrete representation of velocity divergence in general

curvilinear coordinatesξm,m= 1, 2, 3. While velocity divergence would analytically be
zero for a divergence-free velocity field, (16) may still be non-zero due to approximations
used in evaluation of metrics.

Calculation of two-dimensional diffusive transport.The finite-volume representation
of the turbulent-diffusion component of (3), with splitting (8) and (9), can be used to compute
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two-dimensional turbulent diffusion. Accordingly, the turbulent diffusion contribution to
the solution att +1t is given by(

c̄n+1
l V

)
i, j
− (c̄n

l V
)

i, j
+1tdiff

(
Êdiff

l

∣∣
i+1/2, j − Êdiff

l

∣∣
i−1/2, j

+ F̂diff
l

∣∣
i, j+1/2− F̂diff

l

∣∣
i, j−1/2

)n = 0, l = 1, . . . , N. (17)

In Eq. (17),c̄l is the average concentration of chemical speciesl in cell volumeVi, j and
Êdiff

l and F̂diff
l are the net mass effluxes due to turbulent diffusion at cell sidesi±1/2, j and

i, j±1/2, respectively. Details on calculation of diffusive fluxes and the diffusive time step,
1tdiff , are available in Srivastava [17].

Note that advection and turbulent diffusion are calculated using their own time steps.
These processes are synchronized in time to ensure that they advance through the same
time period in any solution step. In DSAGA–PPM, this synchronization is accomplished
by computing advection using1tadv and then repeatedly applying diffusion using1tdiff (or
a fraction of it) until the total time step for diffusion equals1tadv.

The boundary conditions for species transport are termed eitherinflow or outflow, de-
pending on the direction of the flow at the grid boundary under consideration. In fluid flow
situations, generally the species concentrations at inflow boundaries are known as a function
of time. The outflow boundary conditions are generally not known and, therefore, need to
be computed. In DSAGA–PPM, zero-concentration-gradient boundary conditions are used
at outflow boundaries in calculation of advection and turbulent diffusion.

Treatment of emission sources.Most emissions are released from either point locations
(point sources) or area regions (area sources). In order to determine the incremental contri-
bution from source emissions into a computational cell, consider a particular cell of base
areaAb and uniform heighth(t). Given the mass emission rateEP

l (e.g., kg/s) from a point
source, the corresponding rate of change of concentrationin the cell containing this source
is given by

SP
l =

EP
l

h(t)Ab
. (18)

Note that emissions from area sources are introduced as flux boundary conditions.

Computation of chemistry.In Eq. (1), the termsRl , l = 1, . . . , N, describe the contri-
butions to the rates of change ofN chemical species concentrations,c1, c2, . . . , cN , due to
chemical reactions. At any time, for any spatial point, the rate of change of each species
concentration due to chemical reactions can be described by a set of coupled, nonlinear
ordinary differential equations,

dcl

dt
= Rl (c1, c2, . . . , cN), l = 1, . . . , N (19)

and the associated initial conditionscl (0) = c0
l , l = 1, . . . , N.

The functional form of the termsRl , l = 1, . . . , N, can be developed by considering a
homogeneous system in whichN single-phase species participate inm reaction steps of the
form

N∑
l=1

α j l cl →
N∑

l=1

β j l cl , j = 1, . . . ,m, (20)
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where the coefficientsα j l , β j l denote the reactant and product stoichiometry, respectively,
in the reaction stepj . If the reaction rates,r j , of them individual reactions are described
by the mass action law

r j = kj

N∏
l=1

c
α j l

l , j = 1, . . . ,m, (21)

wherekj is a temperature-dependent rate constant, then the chemistry source terms are
given by

dcl

dt
= Rl =

m∑
j=1

(β j l − α j l )r j , l = 1, . . . , N. (22)

Atmospheric chemistry mechanisms include reactions with characteristic time scales that
differ by orders of magnitude. For such mechanisms, Eqs. (22) lead to “stiff” systems of
differential equations.

In this workthe asymptotic integration methodof Young and Boris [34] is used to solve
the system of equations (22). This method is self-starting, is very fast, and requires minimal
storage [18]. In this method, a second-order predictor-corrector scheme that takes into
account the stiffness of equations is employed to integrate the system (22). The method has
been tested against the very accurate chemistry solver EPISODE [35] and has been found
to provide comparable results at significantly reduced costs [18].

3.2. Grid Adaptation and Solution Correction

In the following sections, procedures for moving the grid nodes to region(s) requiring
solution refinement, and for conservatively redistributing the solution field over the resulting
adapted grid, are described.

Weight function formulation. DSAGA–PPM requires a weight functionw(x, y, t), which
will be large in regions where grid clustering is necessary to achieve desired solution accu-
racy. In a flow with reacting species, these species may undergo complex dynamic transfor-
mations in time. Therefore, it may not be possible to predicta priori which of the species
would dictate grid adaptation requirements in simulation of such a flow. Moreover, in at-
mospheric flows, the chemistry processes in one spatial region may be quite different from
those in another region. As a result, some of the species may need resolution in one part
of the modeled region while other species may need resolution in other part(s). Further,
these resolution needs may change with time. One possible strategy to ensure adequate
grid adaptation in such a flow may be to use a weight function that takes into account the
resolution requirements of each of the species included in the chemical mechanism, at each
time step in the simulation.

Using the SIERRA formulation, developed by Laflin and McRae [14] and Laflin [15],
weight functions can be designed that are easy to compute and that promote both grid
node clustering and grid alignment adaptation processes. Using this formulation, a weight
function for use in simulations of reacting flows may be expressed as

wo = V1+e1
o

∣∣∣∣∣∑
l

(12φl )o + wmin

∣∣∣∣∣, φl = cl

(
V

Vo

)e2

, (23)
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FIG. 1. Five-point stencil for computing discretized Laplacian.

where12 is the discrete approximation of the Laplacian operator and(12φl )o represents
the error in the computed value ofcl at cell centero with respect to the value ato obtained
using interpolation ofcl values in the neighboring cells [15]. For thel th species,(12φl )o

is evaluated by

(
12φl

)
o =

Nk∑
k=1

[αk(φl )k] − αo(φl )o, (24)

where

αo =
Nk∑

k=1

(αk). (25)

In (24), Nk is the number of distinct discrete values(φl )k 6= (φl )o used in the discrete
approximation of the Laplacian andαk are constant coefficients of the values(φl )k that
define the discrete approximation. As shown in (25), the coefficient of(φl )o is αo andαo

depends on the valuesαk. In this work, a five-point stencil, shown in Fig. 1, is used to
approximate(12φl )o. The boxes in this figure represent the values(φl )k, and the number
in a box is the value of the coefficientα associated with that box.

In (23), the parametere1 controls weighting of each cell volumeV in relation to its size.
If e1 is negative then smaller cells will be weighted more than larger cells and vice versa.
Thus, choosinge1 to be negative may cause smooth flow features to be under-resolved.
The parametere2 ≥ 0 provides control over the rate of change of the cell volumes in the
grid. If e2 > 0 then evacuation of grid nodes from regions of uniform concentration will
be inhibited and grid orthogonality will be promoted. The parameterwmin is the minimum
allowable weight function value and is typically set such that 10×machine zero≤ wmin ≤
1. Larger values ofwmin are chosen if grid adaptation is only needed in regions with
prominent solution features. The effects ofe1, e2, andwmin on grid adaptation can be seen
in Laflin [15]. In this work, the values ofe1 and e2 were chosen to be−1.0 and 0.0,
respectively.

As defined in Eq. (23), the weightwo at cell centero would include information on the
interpolation error ato in concentration of each of the speciesl and, therefore, would be
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responsive to resolution needs of each of these species ato. However, in a flow with reacting
species, the concentrations of these species may differ by several orders of magnitude.
Therefore, each of the species-specific components(12φl )o in Eq. (23) needs to be scaled
such that (1) the interpolation error(12φl )o is relatively independent of the magnitude of
cl , (2) the scaled(12φl )o adequately represents the resolution requirements ato for each
of the speciesl , and (3) the scaling process is responsive to the dynamic changes in species
concentrations. Taking these requirements into consideration, a weight function suitable for
use in computations involving chemistry can be developed. This development is described
below.

Construction of a weight function with the above considerations starts with determination
of the species-specific SIERRA interpolation error at cell centeri, j , given by

(12φl )i, j = |cl |i−1, j + cl |i+1, j + cl |i, j−1+ cl |i, j+1− 4 · cl |i, j |. (26)

As mentioned above, the value of the parametere2 shown in Eq. (23) is chosen to be zero.
Therefore, for example,cl |i+1, j in Eq. (26) is not weighted by(Vi+1, j /Vi, j )

e2, as required
in Eq. (23).

The concentrations of various species can differ by several orders of magnitude and, in
general, would contain computational noise resulting from finite-precision machine calcu-
lations. The effects of this noise need to be removed from the SIERRA interpolation errors
given by Eq. (26) before these errors are normalized and rescaled. In this work, the interpo-
lation errors are adjusted to remove the computational noise. For each of the species, this
adjustment involves normalizing the interpolation error at each cell center by the average
value of the species concentration over the domain and setting the normalized value to zero
in case this value is less than or equal to 1.× 10−3. The adjustment is

cavg
l =

(∑
i, j

cl |i, j
)/

nn; nn= number of grid cells (27)

(12φl )
adjusted
i, j = (12φl )i, j

/
cavg

l ∀ (12φl )i, j
/

cavg
l > 1.E − 03

= 0∀ (12φl )i, j
/

cavg
l ≤ 1.E − 03. (28)

The adjusted interpolation error given by Eq. (28) is normalized using the maximum
value over the domain:

(12φl )
norm
i, j = (12φl )

adjusted
i, j

/
wl

norm; wl
norm= MAX

(
(12φl )

adjusted
i, j

)
. (29)

This normalization process scales the range of each of the(12φl )
norm
i, j to be between 0 and

1 and, therefore, satisfies requirement (1) given above.
Note that the presence of a relatively large range in(12φl ) over the entire grid would

reflect that the spatial distribution of the concentration of speciesl requires significant
resolution. Since the process of normalization given above compresses the range of each
(12φl ), it becomes necessary to restore each of these ranges by re-scaling.

First a linear combination,wci, j , of the species-specific interpolation errors is formed at
each of the cell centers,

wci, j =
∑

l

(12φl )
norm
i, j . (30)
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Then this linear combination is re-scaled using

wcrescaled
i, j = (wci, j − wcmin)

((12φ)max− wmin)

(wcmax− wcmin)
+ wmin, (31)

where

wcmin = MIN(wci, j ), wcmax= MAX(wci, j ) (32)

(12φ)max= MAX
(
wl

norm

) ∀ l . (33)

The re-scaling scheme utilizing Eqs. (31) through (33) adjusts the range of values (max-
imum to minimum) of thewcrescaled

i, j to be betweenwmin and (12φ)max. Since(12φ)max

represents the largest SIERRA interpolation error value for all species over the entire grid,
this re-scaling scheme ensures that the resolution requirements of all species over the entire
grid are represented in the weight function. Thus, requirement (2) given above is satisfied.
Further, the normalization and re-scaling process depends on the time-dependent, species-
specific SIERRA interpolation errors and, therefore, satisfies requirement (3) given above.

Note that in Eq. (31) the lower end of the range ofwcrescaled
i, j is fixed atwmin. Consequently,

wmin can be used to control the degree of adaptation (or the amount of grid movement).
Finally, note that the normalizing and re-scaling procedure described above requires only
the selection of a value forwmin by the user. This value is chosen based on the experiments
conducted to obtain an acceptable preadapted grid with nodes clustered around any solution
field features, prior to the first time step in a simulation.

Using thewcrescaled
i, j , the weight function at a cell centeri, j is given by [see Eq. (23)]

wi, j = V1+e1
i, j

∣∣wcrescaled
i, j

∣∣. (34)

The weight function resulting from Eq. (34) may result in highly sheared or skewed grids
in which large cell volumes may exist next to small cell volumes. These large volumes
can adversely affect the accuracy of solution calculations in the next time step. Hence, it
is desirable to obtain smooth grids without highly sheared or skewed cells. Therefore, the
weight function resulting from Eq. (34) is smoothed by applying the discretized Laplacian
operator to it [36].

Repositioning of grid nodes.In the adaptive grid procedure described here, repositioning
of the grid nodes is accomplished by a center-of-mass scheme, originally proposed by
Eiseman [37]. In this scheme, a grid node is repositioned such that its position coincides
with the center-of-mass of a local cluster of cells, with mass distribution over the grid being
defined by the weight function. Using this scheme, the new position coordinates of grid
nodeo are given by

Pnew
o =

(
4∑

i=1

wi Pi

)/ 4∑
i=1

wi . (35)

In (35),Pi , i = 1, . . . ,4, are the position coordinates in physical space of the centers of
the cells that are local to the grid nodeo andwi , i = 1, . . . ,4, are the weights associated
with these cells. Note that in a two-dimensional grid, nodeo lies over the center of mass of
any four contiguous cells.
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Solution redistribution. In DSAGA–PPM, a solver-independent solution field redistri-
bution procedure developed in Laflin [15] is employed. In this procedure, the solution field
is fixed with respect to an inertial frame while a control volume,Ä̂, is allowed to move
arbitrarily through the spatial domain. To describe the motion ofÄ̂ through the inertially
fixed solution field, a fictitious grid time,tg, is introduced. The moving control volume is
a function of grid timeÄ̂ = Ä̂(tg), but is not a function of the physical time,Ä̂ 6= Ä̂(t).
Conversely, the solution field is a function of the physical time,cl = cl (t), but is not a func-
tion of grid time,cl 6= cl (tg). Using these concepts, Reynolds transport theorem reduces to
a conservative interpolation equationthat is suitable for numerical application [15]. This
equation is

(c̄l V)
ng+1 = (c̄l V)

ng +
4∑

p=1

(
V
_

p

∣∣ng+1
ng

)(
c_l p

∣∣ng+1
ng

)
, l = 1, . . . , N, (36)

wherec̄l = c̄l (tg) is the average value ofcl over the cell volumeV = V(tg),V
_

p|ng+1
ng is the

volume swept by the cell sidep during movement between grid time levelsng andng+ 1,
andc̄l p |ng+1

ng is the average value ofcl in V
_

p|ng+1
ng .

Equation (36) is used to compute the interpolated cell-averaged values for the depen-
dent variables,̄c

ng+1
l , l = 1, . . . , N. To use (36), the values of the volumesVng,Vng+1,

andV
_

p|ng+1
ng ; values of cell-averaged dependent variables before grid movement,c_

ng

l , l =
1, . . . , N; and values ofc_l p |ng+1

ng , p = 1, . . . ,4, l = 1, . . . , N are needed. The volumes
Vng,Vng+1, andV

_

p|ng+1
ng are computed using the grid node coordinates before and after

grid movement. Valuesc_
ng

l , l = 1, . . . , N are available either as initial conditions or as a
result of the time advancement of the solution discussed in Section 3.1. However, the values
c_l p |ng+1

ng , p = 1, . . . ,4, l = 1, . . . , N need to be determined. In two-dimensional calcula-
tions, the cell and sweep volumes can be calculated exactly and, therefore, the accuracy of de-
termination ofc̄

ng+1
l is entirely dependent on the accuracy of determination ofc_l p |ng+1

ng , p =
1, . . . ,4, l = 1, . . . , N. An error analysis of̄c

ng+1
l , l = 1, . . . , N, conducted by Laflin [15]

shows that to ensure accurate determinations ofc_l p |ng+1
ng , p = 1, . . . ,4, l = 1, . . . , N, (1)

grid-node movements need to be restricted and (2) a higher order scheme needs to be
used for computingc_l p |ng+1

ng , p = 1, . . . ,4, l = 1, . . . , N. Accordingly in DSAGA–PPM,
an interim-step procedure [15] is used to increase the accuracy of solution interpolation
while allowing for an arbitrary amount of grid movement, and a higher order scheme, PPM,
is used to computec_l p |ng+1

ng , p = 1, . . . ,4, l = 1, . . . , N.

In the interim-step procedure, the grid time step,1tg = (tng+1
g − t

ng
g ), is divided into

M smaller interim steps,δtg. If the change in position coordinates of a grid nodeo over
1tg is1Xo = X

ng+1
o − X

ng
o then the change in position coordinates of this grid node over

δtg is given byδXo = (1Xo)/M . In DSAGA–PPM, the value ofM is chosen such that
during any interim step, the movement of any cell side is restricted to one-half of the
corresponding cell length. The interpolated cell-averaged values for the dependent variables,
c̄

ng+1
l , l = 1, . . . , N, are obtained byM iterative applications of

c̄
ng+βm

l = 1

Vng+βm

(
(c̄l V)

ng+βm−1 +
4∑

p=1

(
V
_

p

∣∣ng+βm

ng+βm−1

)(
c_l p

∣∣ng+βm

ng+βm−1

))
, l = 1, . . . , N.

(37)

In (37),m is the interim-step counter such thatm= 1, . . . ,M ; βm = m/M with βo = 0.
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Grid convergence. The center-of-mass scheme, depicted by (35), is a discrete approx-
imation of Poisson’s equation [15]. Therefore, an iterative process is used to obtain ad-
equately converged grid node positions. In each time step, the following steps are taken
in order: (1) weights are computed using the SIERRA approach described above; (2) grid
nodes are moved using (35); (3) the solution is redistributed as described above; and (4) a
check is made on grid convergence. If the grid is converged within a specified tolerance,
then the solution is advanced through a new time step, otherwise weights are recomputed
and the grid movement–solution redistribution procedure is repeated. In DSAGA–PPM, a
limit, δ, is set on the maximum movement of grid nodes relative to largest cell side in the
starting Cartesian grid such that

MAX |1X i, j |
MAX (1x,1y)starting Cartesion grid

≤ δ ∀ i, j (38)

where1X i, j is the change in position coordinates of the nodei, j . If (38) was satisfied,
then the grid was considered to be converged.

Preadaptation. In an air-quality simulation, the domain being modeled will, in general,
contain regions with relatively large gradients in species concentrations. Such gradients
may result from complex interactions between emissions from sources, meteorological
conditions, and atmospheric chemistry. A simulation using DSAGA–PPM would start with
a uniform distribution of grid nodes and would modify this distribution based on the spatial
resolution requirements of the various species. Consequently, using the starting uniform
grid with initial gradients in species concentration can result in an inaccurate calculation of
the solution field in the first time step. In order to remedy this potentiality, a preadaptation
step has been included in the DSAGA–PPM algorithm. In this step, the starting uniform
grid is preadapted to regions with initial concentration gradients before the solution field is
calculated in the first time step. In general, this preadaptation is accomplished by computing
weights based on the initial solution field, moving the grid nodes, checking grid convergence,
and stopping the preadaptation process once the grid is converged, as described in the
previous sections. There could, however, be situations in which the initial solution field
may not contain any concentration gradients but sources in the domain start emitting at the
beginning of the first time step. In such situations, emissions from sources are assumed
to occur before the first time step. The preadaptation process is then completed based on
the gradients resulting from these emissions, and the solution field is reinitialized with
background concentrations.

4. ADVECTION TESTS

The accuracy of results produced by an AQM depends to a large measure on the accu-
racy of computation of the advection process, for two reasons. First, horizontal transport of
pollutant species is dominated by advection. Second, advection affects the accuracy of the
species concentration data available at the beginning of each chemistry integration step and
these data can have a significant influence on the results of atmospheric chemistry calcu-
lations. Thus, it is very important that the advection component of an AQM be computed
accurately.

Tests with model advection problems with known analytical solutions were used in this
work to characterize the improvements in accuracy achieved by using DSAGA–PPM. For
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each of the model problems, DSAGA–PPM and corresponding SGA–PPM results were
obtained on a CRAY T90 vector-processing machine and then compared.

In this work, following Smolarkiewicz and Rasch [38], the errors in the numerical solu-
tions were characterized by the following normalized measures:

EMIN = (cmin− cmin
e

)/
cmax

e , the normalized error in the minimum

value of the solution field; (39)

EMAX = (cmax− cmax
e

)/
cmax

e , the normalized error in the maximum

value of the solution field; (40)

EMAS =
(∑

cV −
∑

ceV
)/∑

ceV, the normalized error in

the total mass; and (41)

ERMS=
√∑

[(c− ce)2V ]
/∑

V, the root-mean-square error of

the solution field. (42)

In the expressions above, min and max refer to the global minimum and maximum values,
respectively, in the solution field; the subscript e stands for the analytical solution; and

∑
is the discrete integral over the modeled region. As defined above, EMIN indicates the
maximum undershoot in the solution field; EMAX measures the damping or overshoot
of the initial solution peak; EMAS indicates the extent of mass conservation; and ERMS
indicates overall error in the solution field. In the definitions of EMAS and ERMS, the
integrals are weighted by cell volume to account for the significant cell volume variation
resulting from grid adaptation.

4.1. A Rotating Cone

In this test, the solid-body rotation of a conical distribution is examined in a two-
dimensional region that is 42 km long in both thex andy directions. The region is initially
discretized with 43× 43 grid nodes, spaced uniformly. The initial conditions consist of a
conical concentration distribution (cone) with a base radius of 4 km and a peak concentra-
tion of 100 units, centered at coordinates (26.5 km, 21.5 km) in the region. The background
concentration in the region is 5 units. This cone is advected in the counterclockwise direc-
tion around the center of the region by a wind with a constant angular velocity of 0.1 rad/h.
The analytical solution of the above problem is a solid-body rotation of the cone [17]. Note
that the cone presents a relatively complex solution feature with a steep gradient at the side
and discontinuities at the apex and at the juncture with the background. It was desirable
to rigorously test the ability of DSAGA–PPM to represent steep gradients and produce
monotonic solution fields. Therefore, the peak concentration was increased to 100 units, in
contrast to those used in other works [18, 39, 40], and the background concentration was
selected to be greater than zero.

In each of the simulations the Courant Friedrich Levy number (CFL) was set at 0.4. In
the DSAGA–PPM simulation, the values of the grid adaptation–related parameterswmin, δ,
and number of smoothing iterations were set at 8.× 10−3, 3.× 10−2, and 15, respectively.
Additionally, in the interim step procedure the movement of any cell side was restricted to
one-half of the corresponding cell length. The values of the adaptation parameters were de-
termined through numerical experiments and were selected to obtain a good preadapted grid.
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FIG. 2. Solution field (a) with oscillations and (b) without oscillations.

Initially, a version of the adaptive grid code without the correction for numerical sources,
described in Section 3.1, was used. Shown in Fig. 2a is the solution after two time steps,
obtained with this code. This solution clearly reflects oscillations in the concentration field.
The code was then modified to incorporate the correction for numerical sources described
in Section 3.1. Shown in Fig. 2b is the solution after two time steps, obtained with the
modified code. This solution is free of oscillations.

Finally, one revolution of the cone is followed using SGA–PPM and DSAGA–PPM. The
results shown in Figs. 3a and 3b reflect that 87% of the peak is retained using DSAGA–
PPM while only 61% of the peak concentration is retained using SGA–PPM. This illustrates
that the adaptive grid locally reduces numerical diffusion and thereby provides better peak
concentration maintenance. As shown in Fig. 3c, the nodes of the adaptive grid at the end
of the simulation are clustered in the cone and have tended to align with the discontinuity
at the background juncture.



FIG. 3. Rotating cone results obtained with (a) SGA–PPM and (b) DSAGA–PPM. (c) Adaptive grid after one
revolution of the cone.

452
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TABLE I

A Summary of Error Characteristics for the Simulations of a Rotating Cone

Solution EMIN EMAX EMAS ERMS

SGA–PPM (43× 43 nodes) −1.1E-14 −3.9E-01 −5.7E-07 1.5E-01
DSAGA–PPM (43× 43 nodes) 1.6E-09 −1.3E-01 −1.3E-04 2.9E-02
SGA–PPM (203× 203 nodes) 0 −1.0E-01 4.4E-13 4.8E-02

The error measures introduced above were used to further compare the static and adaptive
grid solutions. The values of these measures are shown in Table I. The small value of EMIN
for the DSAGA–PPM solution indicates that this algorithm did not introduce appreciable
undershoots as a consequence of improving resolution. Further, the value of EMAS for
the DSAGA–PPM solution reflects that the algorithm has maintained global mass with
reasonable accuracy (about 0.01% loss). The values of EMAX for the SGA–PPM and
DSAGA–PPM solutions reflect that the adaptive grid maintains solution features better
than the static grid (compare peak values of 87 and 61, seen in Figs. 3b and 3a). Finally,
the magnitudes of ERMS reflect that compared to the static grid solution, the adaptive grid
solution has much less overall (root-mean-square or rms) error.

4.2. Four Rotating Cones

In the second two-dimensional test, the ability of DSAGA–PPM to resolve multiple
concentration distributions is examined. In this test, four conical distributions (cones),
located in a 42× 42-km two-dimensional region, are advected in the counterclockwise
direction by a wind with a constant angular velocity of 0.1 rad/h. The region is initially
discretized with 43× 43 grid nodes, spaced uniformly. The initial conditions comprise four
pollutant cones, each with a base radius of 4 km and a peak concentration of 100 units,
centered at coordinates (30.5, 21.5), (20.5, 30.5), (11.5, 20.5), and (21.5, 11.5) in the two-
dimensional region. The background concentration in the region is 5 units.

In each of the simulations the CFL was set at 0.4. In the DSAGA–PPM simulation,
the values of the grid adaptation–related parameterswmin, δ, and number of smoothing
iterations were set at 1.× 10−3, 4× 10−2, and 15, respectively. Additionally, in the interim
step procedure the movement of any cell side was restricted to one-half of the corresponding
cell length. These values of the adaptation parameters were determined through numerical
experiments and were selected to obtain a good preadapted grid.

The results after one full revolution of the cones, obtained without and with grid adapta-
tion, are shown in Figs. 4a and 4b, and the corresponding error characteristics are displayed
in Table II. A comparison of the error characteristics for the static and the adaptive grid

TABLE II

A Summary of Error Characteristics for the Simulations of Multiple Rotating Cones

Solution EMIN EMAX EMAS ERMS

SGA–PPM (43× 43 nodes) −7.4E-13 −4.6E-01 −3.3E-04 5.0E-01
DSAGA–PPM (43× 43 nodes) 3.9E-06 −2.3E-01 6.3E-04 2.7E-01
DSAGA–PPM (85× 85 nodes) 4.4E-8 −1.3E-01 −8.7E-05 9.6E-02
SGA–PPM (115× 115 nodes) −5.9E-9 −2.0E-01 −2.0E-07 2.4E-01
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FIG. 4. Results for four cones obtained with (a) SGA–PPM and (b) DSAGA–PPM.

solutions yields observations similar to those seen in the previous test case. The DSAGA–
PPM (1) does not introduce appreciable spurious oscillations (indicated by the low value
of EMIN); (2) maintains solution features better than SGA–PPM (e.g., peak of 77 versus
54 seen in Figs. 4b and 4a); (3) maintains global mass with reasonable accuracy (0.06%
gain in global mass indicated by EMAS); and (4) provides a solution with less overall (rms)
error than the static grid solution. The adaptive grid at the end of the computation, shown
in Fig. 5, is clustered around the solution field features. These observations reflect that
DSAGA–PPM is able to resolve multiple zones of interest and provide an accurate solution
field.

The accuracy of any DSAGA–PPM solution would appear to depend in part on the number
of nodes available for resolving the solution field features. To examine this hypothesis, a
simulation of one revolution of the cones was completed using an adaptive grid with 85×
85 grid nodes. This refined grid provided approximately the same number of grid nodes per
solution feature (cone) as the single-cone test case conducted with 43× 43 grid nodes. The
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FIG. 5. Adaptive grid after one revolution of the cones.

FIG. 6. DSAGA–PPM solution obtained using a refined grid with 85× 85 nodes.
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FIG. 7. Adaptive refined (85× 85 nodes) grid after one revolution of the cones.

grid adaptation parameters and CFL used in this simulation were identical to those used in
the simulation with 43× 43 nodes.

The DSAGA–PPM result after one full revolution of the cones is shown in Fig. 6, and the
corresponding error characteristics are displayed in Table II. A comparison of the error char-
acteristics for the two DSAGA–PPM solutions and Figs. 4b and 6 reflects solution quality
improvement as the number of grid nodes available for adaptation increases. Furthermore,
by maintaining approximately the same number of grid nodes per solution feature, after
one revolution the values of the cone peaks in the DSAGA–PPM solution for the four cones
are identical to the value of the peak for the single cone (see Figs. 6 and 4b). Finally, the
adaptive refined grid at the end of the simulation, shown in Fig. 7, exhibits better resolu-
tion of the cones than the adaptive grid with 43× 43 nodes (see Fig. 5). A comparison
of Figs. 5 and 7 also reveals that the grid spacings in these figures have the same number
of nodes in the borders of the domain and in the center. This reflects that DSAGA–PPM
has responded intelligently by distributing the extra nodes in the refined grid in the regions
requiring resolution.

5. REACTING POLLUTANT PUFF

An air-quality model includes coupled transport and nonlinear chemistry processes. These
processes can interact and significantly alter the distributions of species in time. For ex-
ample, the shape of a puff of pollutants can change constantly due to changes in the gra-
dients and extrema of the pollutant distributions in the puff. Since chemistry associated
with air pollution is, in many cases, nonlinear, the accuracy of the AQM results depends
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TABLE III

Initial Concentrations of Species in the Pollutant Puff

Background Peak
Species (molecules/cm3) (molecules/cm3)

CO 1.00E+12
H2O 2.50E+15
HC 2.50E+09 1.00E+11
HCHO 1.25E+10 5.00E+11
HO2 1.00E+06
NO 2.50E+09 1.00E+11
NO2 2.50E+09 1.00E+11
O(1d) 1.00E-03
O3 5.00E+11
OH 1.00E+05
RO2 1.00E+06

on the local resolution of the concentration changes. Averaging of these changes over
large cells may greatly underestimate local concentrations, resulting in lower production
of expected products. Consequently, the ability of DSAGA–PPM to adapt to such changes
can only be seen and evaluated in tests with model problems incorporating chemistry. In
this section DSAGA–PPM is tested on a model problem in which a pollutant puff un-
dergoes advection and chemistry. This model problem is similar to that used by Odman
and Russell [1] and Chock and Winkler [41] in their evaluations of static nested grid
applications.

This model test problem consists of advecting a pollutant puff that initially contains col-
located conical distributions of nitric oxide (NO), nitrogen dioxide (NO2), formaldehyde
(HCHO), and lumped hydrocarbons (HC) with the peak concentrations shown in Table III.
Each of these initial distributions has a base radius of 4 km and is centered at coordinates
(26.5, 21.5) km in a domain that is 42 km long in both thex andy directions. The initial
background concentration for each of the species is also shown in Table III. These con-
centrations are identical to those used by [1]. The puff is advected in the counterclockwise
direction around the center of the two-dimensional domain by a wind with a constant an-
gular velocity. During advection, the species in the chemical mechanism undergo chemical
transformations that result in formation of ozone (O3).

Following Hov et al. [42] and Odman and Russell [1], a simple chemical mechanism
describing production and destruction of tropospheric O3 is used in this work. This mecha-
nism is shown in Table IV. The solar zenith angle,θ , that appears in the photolysis reactions
of Table IV is held constant at 71.5◦. This value corresponds to the average zenith angle
experienced during an equinox day at the equator [1].

The chemistry-induced changes in the peak and background values of NO, NO2, HCHO,
and O3 species are shown in Fig. 8 for a time period of 150 s. From this figure it is evident
that rapid transformations of the species occur in the initial 150 s. Accordingly, the ability of
DSAGA–PPM to respond to resolution requirements generated by rapid nonlinear chemical
transformations is examined by completing one revolution of the puff in 150 s.

In the absence of diffusion, the analytically exact solution of advection and chemistry
processes can be assembled as follows. If only advection is occurring, then in any time
periodδt the concentrationc1 of a species is moved from a locationX1 to another location
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TABLE IV

A Simplified Chemical Mechanism for Photochemical

Production of Ozone

Reaction Rate

HC+OH→ 4RO2 + 2HCHO k1 = 6.0× 10−12

HCHO+ hv→ 2HO2 + CO J2 = 7.8× 10−5e−0.87/cosθ
RO2 + NO→ NO2 + HCHO+ HO2 k3 = 8.0× 10−12

NO+ HO2→ NO2 +OH k4 = 8.3× 10−12

NO2 + hv→ NO+O3 J5 = 1.0× 10−2e−0.39/cosθ
NO+O3→ NO2 +O2 k6 = 1.6× 10−14

O3 + hv→ O2 +O(1d) J7 = 1.9× 10−4e−1.9/cosθ
O(1d)+ H2O→ 2OH k8 = 2.3× 10−11

NO2 +OH→ HNO3 k9 = 1.0× 10−11

CO+OH→ CO2 + HO2 k10 = 2.9× 10−13

FIG. 8. Changes in concentrations of selected species over 150 s (a) peak concentrations, (b) background
concentrations.



ADAPTIVE GRID AIR-QUALITY MODELING 459

FIG. 9. Preadapted grid reflecting clustering of nodes in and around the pollutant puff.

X2 . On the other hand, if only chemistry is occurring, then the initial concentrationc1 of
the species atX1 is simply converted toc2. Therefore, if both advection and chemistry are
present, then the concentration atX2 should bec2.

For each of the simulations, a reference solution was created using the above procedure.
Note that a reference solution on a finite-volume grid is simply the discretized representation
of the corresponding analytically exact solution on that grid. Consequently, the appropriate
reference solutions were used to assess the accuracy of the simulation results.

For the numerical simulations, the domain was initially discretized with 43× 43 uni-
formly spaced grid nodes and the CFL was set at 0.4. In the DSAGA–PPM simulation, the
values of the grid adaptation–related parameterswmin andδ and the number of smoothing
iterations were set at 1.× 10−5, 3.× 10−2, and 10, respectively. Additionally, in the interim
step procedure described above, the movement of any cell side was restricted to one-half of
the corresponding cell length. These values of the adaptation parameters were determined
through numerical experiments and were selected to obtain a preadapted grid with cells
closely clustered in and around the puff. This grid is shown in Fig. 9.

Presented in Figs. 10 through 17 are the SGA–PPM and DSAGA–PPM solutions as well
as the corresponding reference solutions, for NO, NO2, O3, and HCHO, after one revolution
of the puff. Figure 18 shows the resulting adaptive grid after 150 s with grid nodes clustered
in and around the puff.

It is interesting to qualitatively compare the results of the simulation with the chem-
istry results presented in Figs. 8a and 8b. Per these figures, between 0 and 150 s, the
peak and background NO concentrations drop continuously, and at 150 s the peak con-
centration is higher than the background concentration. The results in Figs. 10 and 11
are consistent with these observations. In each of these figures, the distribution of NO
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FIG. 10. NO distribution after 150 s in the pollutant puff (a) exact solution on uniform grid, (b) SGA–PPM
solution.

concentration has a valley (formed by the folding-in of the initial peak), the floor of the
valley is higher than the background, and the background is much lower than the start-
ing value of about 4 ppb. However, while the NO peak in the DSAGA–PPM solution
is similar to that in its reference solution, the same is not the case for the SGA–PPM
solution.

The valley in the O3 profile in Fig. 8a reflects that the peak concentration of O3 drops
below the background concentration for about 50 s and then starts growing. The O3 profile in
Fig. 8b indicates that the background concentration of O3 remains virtually constant. These
figures also reflect that at 150 s the peak concentration of O3 is higher than the background
concentration. The results in Figs. 14a, 15a, and 15b are consistent with these observations;
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FIG. 11. NO distribution after 150 s in the pollutant puff (a) exact solution on adaptive grid, (b) DSAGA–PPM
solution.

each of these figures depicts a peak and a valley in concentration of O3. However, the
SGA–PPM result in Fig. 14b reflects that the peak O3 concentration is below the background
concentration. The concentrations of NO2 and HCHO, shown in Figs. 8a and 8b, do not
undergo any peak inversions. Correspondingly, the results in Figs. 12, 13, 16, and 17 do not
exhibit any peak inversions.

The above qualitative observations reveal that some of the fine-scale solution structures
for NO and O3 are captured in the DSAGA–PPM simulation but not in the SGA–PPM
simulation.

As discussed above, the species profiles resulting from chemical interactions can contain
peaks and valleys. Thus, to obtain an accurate assessment of such profiles, it is important
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FIG. 12. NO2 distribution after 150 s in the pollutant puff (a) exact solution on uniform grid, (b) SGA–
PPM solution.

to be able to characterize these peaks and valleys. Accordingly, some of the error measures
introduced earlier were modified to provide such characterizations and facilitate compar-
isons between the static and the adaptive grid solutions. These modified measures are

EVALLEY = cvalley− cvalley
e

cvalley
e

(43)

EPEAK= cpeak− cpeak
e

cpeak
e

. (44)
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FIG. 13. NO2 distribution after 150 s in the pollutant puff (a) exact solution on adaptive grid, (b) DSAGA–PPM
solution.

In addition to these measures, the error in mass, EMAS, and the root-mean-square er-
ror, ERMS, introduced above, are also used to characterize the quality of SGA–PPM and
DSAGA–PPM solutions. Note that in the expressions (43) and (44), the subscripte stands
for the reference solution described above. Thus for each of the DSAGA–PPM and SGA–
PPM simulations, EVALLEY, EPEAK, EMAS, and ERMS are computed based on the
corresponding reference solutions.

For the chemical species, initialized as conical concentration distributions, values of the
above error measures are shown in Tables V and VI. In Table V, the much lower values of
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TABLE V

EVALLEY and EPEAK for the 150-s Simulation of the Puff

SGA–PPM DSAGA–PPM

Species EVALLEY (%) EPEAK (%) EVALLEY (%) EPEAK (%)

HC 2.5E-07 −38.0 4.3E-05 −10.0
HCHO 9.1E-07 −43.0 4.4E-05 −12.0
NO 7.5 −18.2 8.0E-05 1.8
NO2 −1.2E-04 −40.3 −5.6E-05 −10.5
O3 0.60 −3.4 −5.0E-02 −1.2

FIG. 14. O3 distribution after 150 s in the pollutant puff (a) exact solution on uniform grid, (b) SGA–PPM
solution.
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TABLE VI

EMAS and ERMS for the 150-s Simulation of the Puff

SGA–PPM DSAGA–PPM

Species EMAS (%) ERMS (%) EMAS (%) ERMS (%)

HC 0.23 30.0 0.03 3.9
HCHO −0.26 31.0 0.03 3.9
NO 1.80 28.0 1.8E-03 3.6
NO2 −0.18 32.0 0.04 3.9
O3 −5.1E-03 0.15 −7.1E-05 0.03

FIG. 15. O3 distribution after 150 s in the pollutant puff (a) exact solution on adaptive grid (b) DSAGA–PPM
solution.
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FIG. 16. HCHO distribution after 150 s in the pollutant puff (a) exact solution on uniform grid, (b) SGA–PPM
solution.

EVALLEY (%) for the DSAGA–PPM solution for NO and O3 indicate that the adaptive
grid algorithm predicts these valleys much better than the corresponding SGA solution (also
see Figs. 10, 11, 14, and 15).

The lower values of EPEAK (%) for the DSAGA–PPM solutions, compared to those for
the SGA–PPM solutions, for HC, HCHO, NO, NO2, and O3 reflect that the adaptive grid
predicts solution peaks better than the static grid. Note that a negative EPEAK (%) value
indicates that the peak is lower than that in the corresponding reference solution. Note also
that a positive value of EVALLEY and a negative value of EPEAK for O3 in the SGA–PPM
solution reflect that the valley in this solution is higher and the peak is lower than these
features in the corresponding reference solution. These findings are consistent with the fact
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FIG. 17. HCHO distribution after 150 s in the pollutant puff (a) exact solution on adaptive grid, (b) DSAGA–
PPM solution.

that the O3 profile is not as well developed in the SGA-PPM solution as it should be (see
Figs. 14 and 15).

As seen in Table VI, the low values of EMAS (%) for the DSAGA–PPM and SGA–PPM
solutions reflect that the global mass in each of these solutions compares well with the
global mass in the corresponding reference solution. Finally, the much lower magnitudes
of ERMS for the DSAGA–PPM solutions reflect that, compared to the static grid solution,
the adaptive grid solutions have undergone less numerical diffusion and have less overall
(rms) error.

The results of this test indicate that DSAGA–PPM can follow rapid chemical transfor-
mations more accurately than the corresponding static grid algorithm.
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FIG. 18. Adaptive grid after 150 s reflecting clustering of nodes in and around the pollutant puff.

6. COMPUTATIONAL PERFORMANCE

As discussed in the previous sections, a solution with a specific level of accuracy can be
obtained using either DSAGA–PPM with relatively few grid nodes or a refined grid SGA–
PPM with many more nodes. However, to assess the practicality of using DSAGA–PPM in
air-quality simulations, it is useful to obtain an indication of its computational performance.

It is well known that the chemistry calculations consume the majority of the CPU time
used in an air-quality simulation [43]. Therefore, the reacting pollutant puff model problem
described in this work is appropriate for an assessment of DSAGA–PPM’s computational
performance. Shown in Table VII are the CPU times and minimum cell sizes associated
with three simulations of this model problem. Two of these simulations used SGA–PPM
and DSAGA–PPM on a grid with 43× 43 grid nodes; the third simulation used SGA–
PPM on a refined grid with 127× 127 nodes. All these simulations were conducted on a
CRAY T90 machine using a CFL of 0.4, and the code used performs about 320 million

TABLE VII

CPU Times Associated with Simulations of Reacting Pollutant Puff

Minimum cell size CPU time
Simulation Grid nodes (area units) (s)

SGA–PPM 43× 43 1 33.0456
DSAGA–PPM 43× 43 2.2E-02–3.2E-02 299.0532
Refined grid SGA–PPM 127× 127 1.1E-01 18,726.9411
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floating-point operations per second for an average vector length of about 40 units. Note
that in the DSAGA–PPM simulation, the smallest cell size changed with time and ranged
between 0.022 and 0.032 area units.

As shown in Table VII, the cell size in each of the static grid simulations (SGA–PPM or
refined grid SGA–PPM) is substantially larger than the smallest cell size in the DSAGA–
PPM simulation. This indicates that the extent of resolution of spatial distributions of species
is much greater in the DSAGA–PPM simulation. Therefore, the grid in the refined grid
SGA–PPM simulation would have to be refined further to obtain a solution with accuracy
comparable to that achieved in the DSAGA–PPM simulation. These statements are corrobo-
rated by the results obtained in these two simulations. As an example, the values of the error
metrics EVALLEY, EPEAK, EMAS, and ERMS for O3 obtained using refined-grid SGA–
PPM are−0.18× 10−2,−0.17× 10−1,−0.53× 10−5, and 0.46× 10−3, respectively. The
corresponding values obtained using DSAGA–PPM are−0.75× 10−3,−0.12× 10−1,

−0.71× 10−6, and 0.30× 10−3. Clearly the metric values are lower for the DSAGA–
PPM result, thereby indicating that the DSAGA–PPM solution is more accurate than the
refined grid SGA–PPM solution. These results reflect that refined grid SGA–PPM takes
about 63 times more CPU time than DSAGA–PPM to provide a less accurate solution.

While it is difficult to generalize the above indications, the results do reflect that DSAGA–
PPM has the potential to provide accurate air-quality simulations at significant cost savings.
In the near future, a more detailed assessment of DSAGA–PPM’s performance will be
deduced from realistic air-quality simulations.

7. CONCLUSIONS

In this paper the theoretical foundations of a dynamic adaptive-grid algorithm (DSAGA–
PPM) are described. DSAGA–PPM incorporates a weight function formulation that is
designed to resolve chemistry-induced changes in species concentrations. Since the grid
movement and solution interpolation steps in this algorithm are independent of time ad-
vancement of the solution field, the algorithm can be used efficiently with the operator-split
governing equations used in air-quality modeling.

Testing of DSAGA–PPM using a two-dimensional model problem with a rotating conical
distribution shows that the algorithm can resolve dynamic solution features that have sharp
gradients and discontinuities. An error analysis conducted on the results of this model
problem obtained with DSAGA–PPM reveals that representation of extrema and overall
error are greatly improved without any significant loss in mass conservation.

The capability of the algorithm to simultaneously resolve multiple features in a solution
field was examined in another model problem with four rotating conical distributions. As
for the single rotating conical distribution problem, the DSAGA–PPM simulation results
in improved solution compared to that achieved with the corresponding static grid. When
the number of mesh nodes in the four-cones problem is increased to approximately four
times that used for the one-cone problem, the DSAGA–PPM simulation provides solution
resolution and accuracy comparable to those achieved in the adaptive grid solution of the
one-cone problem.

DSAGA–PPM was also applied to a model problem with a rotating pollutant puff un-
dergoing atmospheric chemistry. This model problem was solved for very rapid chemical
changes occurring during transport. Also, reference solutions were computed to facilitate
comparisons between results obtained using DSAGA–PPM and the corresponding static
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grid algorithm (SGA–PPM). The DSAGA–PPM results, as evaluated by error measures, are
much closer to the reference solutions than the SGA–PPM results. This demonstrates that
DSAGA–PPM responds to solution resolution requirements generated by rapid nonlinear
chemical transformations and transport of distributed atmospheric pollutants.

Finally, a significant computational efficiency advantage may be possible if DSAGA–
PPM is used in an AQM with chemistry. The results for the reacting pollutant puff model
problem indicate that an SGA–PPM simulation using a refined grid with 127× 127 nodes
takes about 63 times more CPU time than a DSAGA-PPM simulation on a grid with 43×
43–nodes, but provides a less accurate solution. Therefore, it is concluded that DSAGA–
PPM has the potential to greatly improve AQM accuracy or efficiency or both.

The capability of DSAGA–PPM to provide accurate solutions of coupled transport and
nonlinear chemistry processes has been investigated in additional model problems. Cur-
rently, these results are being processed for future publication. In addition, efforts are
underway to integrate DSAGA–PPM with a currently used AQM. Subsequently, a more de-
tailed assessment of DSAGA–PPM’s performance will be deduced from realistic air-quality
simulations.
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