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Abstract

An adaptive grid model is being developed to reduce the resolution-related uncertainty in

air quality predictions. By clustering the grid nodes in regions where errors in pollutant con-

centrations would potentially be large, the model is expected to generate much more accurate

results than its fixed, uniform grid counterparts. The repositioning of grid nodes is performed

automatically using a weight function that assumes large values when the curvature (change of

slope) of the pollutant fields is large. Despite the movement of the nodes, the structure of the

grid does not change: each node retains its connectivity to the same neighboring nodes. Since

there is no a priori knowledge of the grid movement, the input data must be re-gridded after

each adaptation step, throughout the simulation. Emissions are one of the major inputs and

mapping them to the adapted grid is a computationally intensive task. Efficient intersection

algorithms are being developed that take advantage of the unchanging grid structure.

Here, the grid node repositioning and intersection algorithms are evaluated using surface

elevation data. Two elevation data sets are reduced to one-fourth of their sizes using uniform
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as well as adaptive grids. The first data set contains important terrain features near the bound-

aries while the second has all of its features far away from the boundaries. The compression of

the first data set using grid node repositioning results in a maximum error that is 25% smaller

compared to a uniform grid with the same number of nodes. The maximum error associated

with the adaptive grid compression of the second data set is 60% smaller compared to the uni-

form grid compression. These results show that the adaptive grid algorithm has the potential

of significantly improving the accuracy of air quality predictions, especially when the regions

of changing slope are far away from the boundaries. Indeed, in a preliminary air quality appli-

cation, the adaptive grid displayed superior performance in capturing the details of plumes

from a large number of emission sources. The algorithms are computationally efficient and

the overhead involved in repositioning the grid nodes and intersecting the grid cells with emis-

sion sources is not limiting in air quality simulations.

� 2004 Published by Elsevier Ltd.
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1. Introduction

Emission control strategies that are being developed to improve air quality rely

heavily on simulations with air quality models (AQMs). Control strategies can be

very costly to implement and they have a direct bearing on public health and life-

style. If the accuracy of AQM simulations can be improved, more effective strategies

can be designed. One source of uncertainty in AQM simulations is attributed to the

spatial resolution of the numerical grid, which is limited by the availability of com-

putational resources. A large grid size is unable to resolve input data or capture the

non-linear physical and chemical processes that occur over smaller spatial scales. To
address this issue, nested grid or multiscale modeling techniques have been devel-

oped that use finer grid resolution in regions of interest and coarser grids elsewhere

(Odman et al., 1997). Several AQMs have ‘‘one-way’’ nesting capability where the

coarse grid simulation is used to set boundary conditions for the fine grid but the fine

grid simulation has no feedback onto the coarse grid. A multiscale AQM that allows

‘‘two-way’’ interactions between various scales was developed by Kumar, Odman,

and Russell (1994) and Boylan et al. (2002) based on the finite element transport

scheme of Odman and Russell (1991a, 1991b). All these techniques are limited by
not knowing, a priori, where to place the finer resolution grids, loss in solution accu-

racy due to grid interface problems (Alapaty, Mathur, & Odman, 1998), and the

inability to adjust to dynamic changes in the solution. An alternative approach to

achieving local resolution involves using dynamic adaptive grids, which are not sub-

ject to the aforementioned limitations. Adaptive grids have been applied to various

problems in atmospheric modeling. Dietachmayer and Droegemeier (1992) used a

variational formulation to adapt the grid and minimize the error in meteorological

modeling. Skamarock and Kemp (1993) used a hierarchical grid approach to model
compressible formulation of the atmospheric flow equations. Almgren, Bell, Collela,
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Howell, and Welcome (1997) used a nested hierarchy of grids, with simultaneous

refinement of grids in both space and time to resolve the release of hot gasses into

the atmosphere. Tomlin, Berzins, Ware, Smith, and Pilling (1997) applied a three-

dimensional adaptive grid technique to study atmospheric dispersion problems

using a finite volume cell-vertex approach on unstructured grids (tetrahedral
elements). Kessler (1999) used a dynamic adaptive grid to solve two-dimensional

transport problems. More recently, Srivastava, McRae, and Odman (2000, 2001a,

2001b) designed an adaptive grid algorithm for use in air quality modeling. In

this algorithm, using a weight function that represents the error in the solution

(i.e., in pollutant fields), grid nodes are clustered in regions where they are needed

the most.

Probably the most restrictive issue in the development of adaptive grid AQMs is

the processing of emissions for a continuously moving grid. Emission inventories in-
clude hundreds of compounds emitted from a variety of sources ranging from large

utility plants to motor vehicle tailpipes. Geographical information systems (GIS) are

used to retrieve the raw emissions data from the inventories and generate gridded,

time-varying emissions in terms of the chemical species represented in the models.

In adaptive grid models, the shape and location of grid cells change after each adap-

tation. A source that lies in a grid cell might lie in another cell after adaptation.

Therefore, the processing of emissions data must be performed in real time, after

each adaptation of the grid. The task of locating a point (e.g., stacks), line (e.g.,
roads) or an area (e.g., farm) source within a grid is referred to as the intersection

problem (Karimi, Brandymeyer, Wong, & Bourgeois, 1999). Efficient intersection

algorithms are needed to reduce the overhead of re-gridding emission inputs in real

time.

This paper describes the grid-node repositioning and emission source intersection

algorithms, and discusses their performance in a test problem consisting of adapting

a grid to surface elevation data. The reason for using elevation data in this exercise is

the similarities between complex terrain and pollutant fields, in terms of changing
slopes. The major difference between an elevation field and a pollutant field is that

the former is static while the latter changes in time. However, in AQM simulations,

the evolution of pollutant fields is captured in discrete time steps. Each time step is

followed by a grid adaptation step such that the pollutant field can be better re-

solved. Hence, the test with surface elevation data emulates a single adaptation step

of an actual AQM simulation where time evolution is stopped and the grid is

adapted to the pollutant field. As long as the terrain is complex enough to imitate

typical pollutant fields, this test may be viewed as a robust evaluation case for the
grid-node repositioning algorithm. The test case also evaluates the point-source

intersection algorithm in an indirect way. While the elevation of repositioned nodes

is calculated, there is a need to locate the cell of the elevation data grid that contains

the node location. While there are more efficient ways of performing this task, we use

the point-source intersection algorithm, which was designed for a similar purpose: to

locate the fixed position of a point source over a moving grid. This way we are able

to evaluate both the grid-node repositioning and point source intersection algo-

rithms in the same test.
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2. Methodology

The adaptive grid methodology used here is based on the Dynamic Solution

Adaptive Grid Algorithm (Benson & McRae, 1991). Since it is described in detail

in Srivastava et al. (2000), it will only be highlighted here. The method employs a
constant number of grid nodes that partition a rectangular domain into N by M

quadrilateral grid cells. The nodes move throughout the simulation but the grid

structure remains the same (i.e., topology does not change). In other words, each

node is still connected to the same neighboring nodes but the length of the links

and the area of the grid cells change. One of the advantages of using a structured grid

is that, through a coordinate transformation, the non-uniform grid in the physical

space can be mapped onto a uniform grid in the computational space. The solution

of partial differential equations that govern atmospheric diffusion is simpler on a uni-
form grid. Another advantage is compatibility with the majority of existing AQMs.

It is easier to follow new developments in atmospheric modeling with structured

grids (and finite difference/volume methods) since they are much more common than

unstructured grids (and the finite element method).

The movement of the nodes is controlled by a weight function whose value is pro-

portional to the error in the solution. The nodes are clustered around regions where

the weight function bears large values, thereby increasing the resolution where the

error is large. Since the number of nodes is fixed, refinement of grid scales in regions
of interest is accompanied by coarsening in other regions where the weight function

has smaller values. This yields a continuous multiscale grid where the scales change

gradually. Unlike nested grids, there are no grid interfaces, which may introduce

numerous difficulties due to the discontinuity of grid scales. The availability of com-

putational resources determines the number of grid nodes that can be afforded in any

AQM. By clustering grid nodes automatically in regions of interest, computational

resources are used in an optimal fashion throughout the simulation.

2.1. Weight function and grid node repositioning

The grid nodes are moved using a weight function along with a center-of-mass

repositioning scheme. The weight function must be such that its value is large in re-

gions where grid nodes need to be clustered. There are also some requirements for

the resulting grid in order to assure an accurate numerical solution of governing par-

tial differential equations. The grid must be free of highly skewed cells, and there

must be a smooth transition from small to large cells with no voids in regions where
the pollutant field is relatively uniform. Laflin and McRae (1996) developed a weight

function that satisfies these requirements and is very easy to compute. The value of

the weight function for grid cell (i, j) is calculated as:

wi;j ¼ r2ð/Þi;j þ wmin ð1Þ
where $2 is a discrete approximation to the Laplacian operator of the form

r2ð/Þi;j ¼
1

4
/i�1;j þ /iþ1;j þ /i;j�1 þ /i;jþ1 � 4/i;j

� �
ð2Þ
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which also represents the difference between the grid node value of field variable /
and the value obtained from the interpolation of / values in the neighboring cells.

A relatively small value of $2/ for any cell indicates that the grid can support rela-

tively accurate interpolations of / in the neighborhood of that cell. A minimum

weight, wmin, inhibits evacuation of grid nodes from regions of uniform /.
The weight function above can result in the formation of concave or highly

skewed grid cells. Since such grid cells are undesirable, a diffusive filter is applied

to smooth this weight function (Srivastava et al., 2000). The final weight function

is obtained by applying an area weighting to the smoothed weight function.

~wi;j ¼ A1þe
i;j wfiltered

i;j

� �
ð3Þ

The parameter e controls weighting with respect to the cell area A: a positive value

gives more weight to larger cells and promotes gradual transitions from larger to

smaller cells.
Repositioning of the grid nodes is accomplished by a center-of-mass scheme pro-

posed by Eiseman (1987), which defines the new position of the grid node (k, l), ~Pk;l,

as:

~Pk;l ¼
Pk

i¼k�1

Pl
j¼l�1wi;j

~Qi;jPk
i¼k�1

Pl
j¼l�1wi;j

ð4Þ

where ~Qi;j are the position vectors of the centroids of four cell sharing the grid node

and wi,j are the values of the weight function at those locations.

If the maximum movement of all grid-nodes is below a preset tolerance, the grid is
considered to have resolved the field sufficiently. Otherwise, the weight function is

recomputed and the grid adaptation procedure is reiterated. The movement toler-

ance used here is, for any node, 5% of the distance to the closest node.

2.2. Emission source-grid cell intersection algorithm

Since the locations of the grid nodes have changed in the physical space, input

data such as emissions must be re-gridded. As mentioned before, there are three
major types of emissions being input into an AQM: emissions from point, line

and area sources. Gridding of these emissions requires finding the intersections of

each source type with the adapting grid cell. The structure of the grid at hand and

the quadrilateral shape of the cells can be exploited to develop efficient intersection

algorithms. This way the overhead involved in the re-gridding operations can be sig-

nificantly reduced.

Intersecting point sources with the grid is the easiest one. A search is conducted

over all grid cells to find out which one encloses the point source. The following algo-
rithm has been developed. As illustrated in Fig. 1, starting from any vertex, two vec-

tors are drawn: one to the next vertex in the counterclockwise direction and another

to the point source location. If the cross product of the first vector with the second

vector is negative (in a right-handed coordinate system), then the point source is out-

side this cell. In this case, checking the sign of the cross product is continued from the
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Fig. 1. Locating a point P in a grid cell (left). Arrows indicating the search as it proceeds to locate point P

in N by M grid cells (right).
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neighboring cell that shares with the original cell the side marked by the first vector
above. In a structured grid where the cells are stored in an N by M array, finding this

neighboring cell is trivial. If the cross product is positive, the process is continued

from the next vertex of the cell. If the process yields positive cross products for all

four vertices, then the point is inside that cell.

In general, the adaptive grid is initialized as a uniform grid. After the initial adap-

tation, the changes in pollutant fields during the air quality simulation are usually not

dramatic enough to require a sudden adaptation from a uniform grid to a grid that

can support a very complex field. In other words, the grid node movements would
never be as large as they were in the initial adaptation step. In fact, it is very likely

that the cell containing the point source prior to grid node repositioning would not

move too far away from that source. Therefore, the point source can be located much

faster by starting the search from the cell where it was found in the previous search.

Efficient algorithms that take advantage of the topology of the grid and small

changes in pollutant fields have also been developed for line and area sources (Khan,

2003). Processing of line source emissions requires computing the length of each line

source that falls within an adaptive grid cell. The line-polygon intersection process
commences with identification of the grid cells that may fully or partially contain

the source. Then, the point(s) of intersection of the line source with the grid cell sides

are located. Unless the line source is wholly contained in a grid cell, the length of the

line source that falls in a grid cell is either the distance between the line-source vertex

in that grid cell and the intersection point or the distance between two intersection

points. The amount of emission from the line source into the grid cell is calculated

by taking the product of the line-source�s length within that cell with its emission rate

per unit length. For computational efficiency and as in case of point sources, the
search for the grid cell(s) that contains the line-source vertices begins from the cell(s)

where they were found the last time.

In case of area sources, which are specified on a uniform grid (referred to as the

emissions grid), the fractional area of each emissions grid cell that intersects with the

adaptive grid cell must be calculated. The intersection polygon is built by locating all
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the intersection points of the adaptive and emission grid cell sides. For computa-

tional efficiency, the adaptive grid cell coordinates are used to select the emission grid

cells that are likely to intersect the adaptive grid cell. The contribution of emissions

from each overlapping polygon is summed up to provide the total area-source emis-

sions emitted into the adaptive grid cell.
3. Applications to surface elevation data

The adaptive grid algorithm was applied to problems with increasing complexity

and relevance to air quality modeling. Starting with pure advection tests (Srivastava

et al., 2000), it was applied to reactive flows (Srivastava et al., 2001a) and to the sim-

ulation of a power-plant plume (Srivastava et al., 2001b). In all these applications,
the adaptive grid solution was more accurate than a static, uniform grid solution ob-

tained by using the same number of grid nodes. These applications, though being

very relevant, had at best only a few flow features to be resolved. Here, the objective

is to evaluate the potential performance of the algorithm in a regional-scale air qual-

ity simulation where hundreds of features such as puffs and plumes would have to be

resolved simultaneously. To achieve this objective without performing an actual sim-

ulation, surface elevation data are used as a surrogate for pollutant concentration

fields as described below.
The spatial distribution of surface elevation over complex terrain resembles pol-

lutant concentration fields in many ways. Over large regions of flat surface such as

oceans, lakes, valleys and plains, there are local features with large curvature in

coastal areas, foothills, and mountain peaks. The only notable difference is that sur-

face elevation is constant over time. However, recall that the grid adaptation proce-

dure is applied by freezing the evolution of the pollutant field, thus, at any instant,

the complexity of a pollutant field can be well represented by a surface elevation

field. The application consists of reducing the number of data points by 75%. First,
every other data point in x- and y-direction is eliminated. Then, the remaining points

are relocated according to the curvature of the terrain. Finally, the ability of the grid-

node relocation algorithm in retaining the accuracy of the original surface elevation

data is evaluated.

Note that the purpose of this exercise is not to reproduce specific features of the

terrain such as hill top lines. For surface elevation data, there are methods such as

the very important point (VIP) method (Tsai, 1993) specifically designed for elimi-

nating unimportant points from a uniform grid and retaining important ones. Trian-
gulated irregular network (TIN) is the preferred method for storing large elevation

data sets because of its efficiency and simple structure for accommodating irregularly

spaced data points (e.g., Carter, 1988; Lee, 1989). Lee (1991) reviews and evaluates

various methods for extracting TINs from dense digital elevation models (DEMs).

TINs can accommodate finer resolution that is needed to define important small-

scale features of the terrain. They may be stored in a hierarchical structure for appli-

cations that require different resolutions. (Scarlatos & Pavlidis, 1992). TINs typically

require far less storage than regular grid DEMs to represent the same topography



M.N. Khan et al. / Comput., Environ. and Urban Systems 29 (2005) 718–734 725
(Goodrich, Woolhiser, & Keefer, 1991). TINs are not used in air quality modeling

where the preferred data structure is the regular grid. It is much easier to solve

the partial differential equations that define the time evolution of pollutant fields

over regular or structured grids such as the adaptive grid used here.

Conversely, note that the adaptive grid algorithm has not been developed for the
purpose of compressing regular grid DEM data. There are much better suited meth-

ods for that purpose. As the resolution of DEMs become finer, the level of data

redundancy increases, especially if data points were sampled regularly. To minimize

storage space, DEM data can be compressed by eliminating redundancy. For certain

applications that can tolerate some constrained error, compromising data accuracy

can further increase storage efficiency. A detailed review of data compression algo-

rithms applied to regular grid DEMs can be found in Franklin (1995). Compression

algorithms can be classified as lossless and ‘‘lossy’’ where ‘‘lossy’’ refers to the meth-
ods that introduce a controllable error to the original data. Some compression ap-

proaches use mathematical functions to approximate terrain, such as polynomials

or quadtrees. Wavelets (Froment & Mallat, 1992) and fractals (Fisher, 1992) offer

powerful alternatives for compressing surface elevation data. Kidner and Smith

(1997, 2003) analyzed a number of different strategies for compressing DEM data.

The search for better compression methods continues and is receiving significant

attention from atmospheric researchers as the volume of available air pollution data

increases rapidly.

3.1. Application to the United States–Mexico border area

The surface elevation data for the United States–Mexico border area (Joseph,

1997) were processed onto a uniform 136 · 80-cell fine grid with a 6.25-km resolution

(Fig. 2). The same data were also mapped on a coarse grid with 68 · 40-grid cells,

and uniform 12.5-km resolution. This second grid serves as the static grid with which
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the adaptive grid is compared. It also constitutes the starting point for the adaptive

grid. A weight function was computed based on the curvature of the terrain and the

grid nodes were repositioned. After the coordinates of the adapted grid are com-

puted in the physical space, the elevation of the grid nodes was obtained by bilinear

interpolation from the fine grid. During this procedure, it is necessary to find the fine
grid cell containing any given node of the adaptive grid. For this, we used the above

described intersection algorithm developed to search for the grid cell that contains

any given point source.

In order to assess if the adapted grid captures the surface elevation more accu-

rately than the coarse grid, which is static and uniform, surface elevation from both

grids is interpolated back onto the fine grid. Thus, there are three sets of surface ele-

vation data on the fine grid: one from the DEM data set, another which is interpo-

lated from the coarse grid, and a third one interpolated from the adaptive grid. These
data sets are used in calculating and comparing the errors from the adaptive and

coarse grids. The adaptation process is continued until all the node movements

are below the preset relative tolerance of 5%.

The evolution of the grid during the adaptation process was visualized to see if the

grid-repositioning algorithm created any highly skewed cells or voids in areas of flat

terrain. The grid node movements were large in the beginning, but decreased as

shown in Fig. 3. However, there were short periods during which large grid node

movements were observed. These movements were almost always associated with
the movement of boundary nodes that have only one degree of freedom. The grid

movement tolerance was achieved after 353 iterations.

The final configuration of the grid is shown in Fig. 4. The transitions from coarse

to fine resolution (or vice versa) are smooth and no highly skewed cells or voids are

visible. In general, the grid nodes are clustered in regions with abrupt changes in sur-

face elevation. Particularly noticeable is the clustering of grid nodes near the south-

ern boundary where such changes are more prominent.
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Note that there are uncertainties in the DEMs themselves but, for simplicity, it

was assumed that DEM values are exact in the following error analysis. The differ-

ence between the interpolated surface elevation (either from the adaptive grid or

from the coarse grid onto the fine grid) and the DEM data value at any fine grid

node is defined as the nodal error:

Ei;j ¼ /DEM
i;j � /INTERPOLATED

i;j

���
��� ð5Þ

The domain wide maximum nodal error as a function of grid node repositioning

iterations is shown in Fig. 5. Also shown in Fig. 5, is the maximum error for a sub-

domain obtained by excluding all grid nodes that are located within 100km of the

domain boundary. The smaller maximum error for the sub-domain indicates that
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the error is larger at nodes closer to the boundaries of the domain. This is due to the

fact that boundary nodes are allowed to move in one-dimension only.

The maximum nodal error decreases from the initial value of 671m, which is also

the maximum error for the coarse grid, to 490m after 353 iterations (Fig. 5). The in-

creases in maximum error after periods of monotonic decrease correspond to shifts
in maximum error from one area of the geographic domain to another. Recall that,

since the number of nodes is fixed, the adaptive grid algorithm is clustering the nodes

around one terrain feature at the expense of decreased resolution elsewhere. There-

fore, while the local error around one terrain feature is decreased, it may start to in-

crease around some other feature. The decreasing trend in the maximum error is

promising and is much more pronounced in the sub-domain. In fact, the maximum

error decreases substantially in the sub-domain, from 502m to 329m after 353 iter-

ations. This suggests that the grid is converging towards a state where the domain-
wide maximum error is minimized, although the final grid, which satisfied the node

movement tolerance, does not correspond to the minimum local error.

In summary, the maximum error is 25% less on the adaptive grid than on a uni-

form coarse grid. The adaption and repositioning process is able to reduce the max-

imum error more efficiently at nodes that are located away from the boundaries of

the domain. Maximum error in the sub-domain decreased by 35%. It was further ob-

served, that the maximum error might shift from one location to another several

times during the iterative grid-node repositioning process, and it is not necessarily
minimized at the end, when the movement tolerance is met. The rate of convergence

is not very fast, but since the grid-node repositioning algorithm is inexpensive (all

353 iterations were completed in 750s on a 200MHz processor) this does not pose

a limitation. The resulting grid fulfills all of the requirements set forth for accurate

numerical solution of partial differential equations.

3.2. Application to the Island of Hawaii

In the application above, the presence of prominent terrain features near the

boundary had a significant impact on the results. The region surrounding the Island

of Hawaii was selected for a second application. Since all the boundaries of this do-

main are over the ocean (Fig. 6(left)), the performance of the adaptive grid algorithm

can be better assessed in this application. The surface elevation data from the DEM

(USGS, 1997) were mapped onto a uniform 120 · 120-cell fine grid with a 4-km res-

olution. The same data were also processed on a coarse grid with 60 · 60-grid cells

and uniform 8-km resolution. The procedure used in this application is the same as
the one in the previous application.

There are no highly skewed cells present in the final configuration of the grid

shown in Fig. 6(right). This configuration was achieved in 375 iterations. As desired,

the grid nodes are clustered around the areas with sudden changes in surface eleva-

tion. The movement of the grid nodes decreased exponentially (Fig. 7) and in a more

monotone fashion compared to the previous application (compare to Fig. 3). How-

ever, the rate at which the movement tolerance was achieved was approximately the

same in both applications.
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As shown in Fig. 8, the maximum nodal error, which had an initial value of 520m,

decreased by 60% to a value of 198m after 375 iterations. During this general de-

crease, brief periods of increase are observed. These correspond to shifts in maxi-

mum error from one area of the geographic domain to another, as it was the case

in the previous application. The decreasing trend in the global maximum error is

more pronounced than in the previous application (compare to Fig. 5). Clearly,
the grid is converging towards a state where the domain-wide maximum error is min-

imized, although the final grid, which satisfied the node movement tolerance, does

not correspond to the minimum local error. In order to reduce the maximum error
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below 198m, which is the minimum in Fig. 8, the number of grid nodes would have
to be increased.

Also analyzed was the cumulative error defined as:

Ecum ¼
X
cg

/DEM � /INTERPOLATED
�� ��þ

X
fg

/DEM � /INTERPOLATED
�� �� ð6Þ

As shown in Eq. (6), the cumulative error has two components. The first component

is the error on the fine grid nodes that also belong to the coarse grid (cg) and the

second component is the error at the remaining nodes of the fine grid (fg). After

an initial period of increase (up to about the 10th iteration), there is an exponential

decrease in cumulative error (Fig. 9). Clearly, the initial increase in the cumulative
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error is coming from the first component. Recall that the adaptive grid was initially

the same as the coarse grid and that the surface elevation values for all the nodes

were derived from the DEM data. Thus, the error at the nodes shared by the coarse

and fine grids is zero. Once the node movement starts, the error at those nodes can

only increase, but it reaches a plateau after about 15 iterations. Meanwhile, the
cumulative error component for the nodes that are only on the fine grid decreases

exponentially. At about the 10th iteration, the decrease in the second component off-

sets the increase in the first component, so the overall cumulative error starts

decreasing. The monotonic decrease of the cumulative error afterwards shows that

the grid adaptation is effectively increasing the accuracy of surface elevation, glob-

ally. Overall, the cumulative error decreased by more than 25% compared to the ini-

tial (coarse) grid.

In summary, the error in representing surface elevation data with four times fewer
nodes than the original fine grid is smaller on the adaptive grid than the uniform

coarse grid. Maximum error may shift from one location to another during the

grid-node repositioning process. However, the cumulative error decreases almost

monotonically indicating that the global error is effectively minimized.
4. Application to air quality data

The algorithms described above were incorporated in an AQM (Odman, Khan, &

McRae, 2001). The model was applied to a historical air pollution episode over Ten-

nessee Valley (Khan, 2003). Air quality simulations were conducted using a conven-

tional static grid at 8-km resolution and an adaptive grid starting at a resolution of

8km. Hence both grids use the same number of grid cells and they share the same

vertical structure with 20 unequally spaced layers extending from the surface to

5340m. Surface-layer nitrogen oxide (NO) concentration field was used in Eq. (1)

to calculate the weight function that drives the grid adaptations. The adaptive grid
simulation took about twice as long as the static grid. This is primarily due to the

shorter time steps used in the adaptive grid simulation. Since the grid sizes are con-

siderably smaller in regions of refinement, a much shorter time step is needed to keep

the explicit transport schemes stable. A shorter time step means more frequent calls

to process routines like diffusion and chemistry hence an increased computational

overhead. The time spent in adapting the grid and intersecting the emissions with

the grid cells is only a small fraction of the overall computational time.

NO is emitted from point, line and area sources as a combustion byproduct. It
plays an important role in photochemical reactions leading to smog therefore AQMs

should track the NO fields very accurately. Fig. 10 shows snapshots of the surface

NO concentration fields from the static and adaptive grid simulations. Note that a

number of isolated NO plumes from point sources are visible only in the adaptive

grid simulation. The static grid simulation is unable to capture plumes from several

industrial facilities and power plants in Tennessee, northern Alabama, central Geor-

gia, and western South Carolina. Also of note is the ability of the adaptive grid

to resolve steep concentration gradients near individual NO emission sources
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throughout the domain as indicated by the increased number and closeness of the

contours. The difference between the results of adaptive and static grid simulations

clearly demonstrates the superior ability of the adaptive grid modeling technique to

capture the details of pollutant plumes.
5. Conclusion

An adaptive grid AQM is being developed. In this paper, the grid node reposition-

ing and the point-source–grid-cell intersection algorithms were evaluated, for both

efficiency and accuracy, using surface elevation data. The algorithms were found effi-

cient enough that the overhead of grid adaptations or re-gridding of emissions

should not be restrictive in AQM simulations. The adaptive grid improves the accu-
racy considerably over a uniform grid with the same number of nodes. The
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maximum error decreased by 25% due to grid adaptations in an application to the

terrain of the United States–Mexico border area. The adaptive grid algorithm per-

forms better when regions with large curvature in surface elevation are located away

from the boundaries of the domain. This is evident from the analysis of error at

nodes that are located more than 100km from the domain boundaries. The decrease
in maximum error at such nodes is 35%. In a second application to a region sur-

rounding the Island of Hawaii where the changes in terrain slope are far away from

the boundaries, the maximum error decreased by 60% and the cumulative error de-

creased by 25%. Finally, the algorithms described in this work were incorporated

into the AQM. Application of the AQM to an air pollution episode in the Tennessee

Valley indicates significant improvement in the ability to capture point source

plumes at reasonable computational cost.
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