
Instability in WRF?

A sign of instability has been detected in WRF wind fields. During the simulation of a prescribed burn with a plume model that uses a single wind profile extracted from WRF, we noticed that the plume did not align with field observations. When we examined the WRF wind fields, we discovered that the surface winds displayed a strange pattern during the burn period. We repeated the WRF run under more close surveillance but we got the same exact pattern. From 1500 to 2000 Z on April 15, 2008, the east-west wind component oscillates, creating north-northwesterly and north-northeasterly winds at consecutive grid points around Ft. Benning, Georgia (Figure 1).

Layer 1 SQRT(UWINDn**2+VWINDn**2)

Figure 1. Surface winds over Ft. Benning GA on April 15,2008 at 1800 Z. The wind speed is from 3 to 4.5 m/s. Wind vectors are shown at every grid point. Note the oscillation of the east-west wind component, which appears to be a sign of instability in WRF.

The pattern seen in Figure 1 appears to be a classic odd-even decoupling of the solution. To our knowledge, this is one of the targets of damping in WRF, therefore it should not happen. However, if the coefficients for the added damping were calibrated for typical mesoscale grid spacings in the horizontal but the grid spacing here (1333 m) were much smaller than the ones WRF damping is calibrated for, then the amount of damping may be insufficient to suppress the oscillations. It appears that the present damping in WRF does not take effect at small scales and relatively benign conditions such as the one we discovered. Ideally, the damping should be a

function of grid spacing and should get rid of any oscillations before they grow to detectable proportions.

The attached "namelist" file describes the configuration we used for the WRF run. This was a run with WRFV3.0 on 4 CPUs. The simulation is a 10-day episode in April 2008 (7th through 16th) focusing on central Georgia with 3 nests of 12-, 4-, and 1.333-km resolution, respectively, with feedback from nest to parent (i.e., two-way nesting). The time step for the 1.333-km grid was 8 seconds (24s for 4-km and 72s for 12-km, respectively). We used 35 levels in the vertical.

We can provide the outputs (and inputs) if you are interested in analyzing this problem. We did not see any warnings in the log files which would point to this problem.

&time_control run_days run_hours run_minutes run_seconds start_year start_month start_day start_hour start_minute start second end_year end_month end day end_hour end_minute end second interval_seconds input_from_file history_interval frames_per_outfile restart restart_interval io_form_history io_form_restart io_form_input io_form_boundary debug_level auxinput1_inname / &domains time_step time_step_fract_num time_step_fract_den max_dom s_we e_we s sn e_sn s_vert e_vert num_metgrid_levels dx dy grid_id parent_id i_parent_start j_parent_start parent_grid_ratio parent_time_step_ratio feedback smooth_option interp_type lagrange order zap close levels lowest_lev_from_sfc force sfc in vinterp p_top_requested eta_levels

= 10, = 0, = 0, = 0, = 2008, 2008, 2008,= 04, 04, 04, = 07, 07, 07,= 00, 00, 00,= 00, 00, 00,= 00, 00, 00,= 2008, 2008, 2008,= 04, 04, 04,= 17, 17, 17, = 00, 00, 00, = 00, 00, 00, = 00, 00, 00, = 10800= .true.,.false.,.false., = 60, 60, 60,= 24, 24, 24, = .false., = 4320, = 2 = 2 = 2 = 2 = 0, = "met_em.d<domain>.<date>" = 72, = 0, = 1, = 3, = 1, 1, 1, = 79, 124, 97, = 1, 1, 1, = 79, 100, 100, = 1, 1, 1, = 35, 35, 35, = 40 = 12000,4000, 1333.333, = 12000, 4000, 1333.333, = 1, 2, 3, = 0, 1, 2, = 0, 16, 30, = 0, 20, 14, = 1, 3, 3, = 1, 3, 3, = 1, = 0 = 1 = 1 = 500 = .false. = 1 = 5000 = 1.0000, 0.9975, 0.9950, 0.9900, 0.9800, 0.9700, 0.9600, 0.9400, 0.9200, 0.9000, 0.8750, 0.8500, 0.8200, 0.7900, 0.7550, 0.7200, 0.6850, 0.6500, 0.6150, 0.5800, 0.5450, 0.5100, 0.4750, 0.4400, 0.4000, 0.3600, 0.3200, 0.2800, 0.2400, 0.2000, 0.1600, 0.1200, 0.0800, 0.0400, 0.0000, / &physics mp_physics = 2, 2, 2, = 1, 1, 1, ra_lw_physics ra_sw_physics = 1, 1, 1, 10, radt = 10, 10, = 1, sf_sfclay_physics 1, 1, = 2, 2, 2, sf_surface_physics = 1, 1, 1, bl_pbl_physics Ο, = 0, Ο, bldt 1, cu_physics = 1, Ο, 15, cudt = 5, 60, isfflx = 1, ifsnow = 0, = 1, icloud = 1, surface_input_source = 4, num_soil_layers mp_zero_out = 0, = 1, maxiens maxens = 3, = 3, maxens2 = 16, maxens3 ensdim = 144,/ &fdda grid_fdda = 1, 0, 0, gfdda_inname = "wrffdda d<domain>", = 240, 240, 240, gfdda_end_h = 360, 180,180, gfdda_interval_m = 0, 0, fgdt Ο, Ο, Ο, = if_no_pbl_nudging_uv Ο, 1, if_no_pbl_nudging_t = 1, 1, 1, 1, 1, if_no_pbl_nudging_q = = 0, if_zfac_uv Ο, Ο, = 8, k_zfac_uv 8, 8, = 0, Ο, if_zfac_t Ο, = 8, 8, k_zfac_t 8, Ο, = 0, if_zfac_q Ο, = 8, k_zfac_q 8, 8, = 0.0003, 0.0003, 0.0003,quv = 0.0003, 0.0003, 0.0003,gt = 0.0003, 0.0003, 0.0003,gq if ramping = 0, dtramp min = -60.0,

= 2,

dtramp_min io_form_gfdda /

```
&dfi_control
dfi_opt
                                      = 0
dfi_nfilter
                                      = 0
dfi_write_filtered_input
                                      = .false.
dfi_write_dfi_history
                                      = .false.
/
&dynamics
                                      = 1,
w_damping
                                      = 1,
diff_opt
                                      = 4,
km_opt
base_temp
                                      = 290.
                                                Ο,
                                                       Ο,
khdif
                                      = 0,
                                                Ο,
                                                         Ο,
kvdif
                                      = 0,
non_hydrostatic
                                      = .true., .true., .true.,
/
&bdy_control
spec_bdy_width
                                      = 5,
                                      = 1,
spec_zone
                                      = 4,
relax_zone
                                      = .true., .false.,.false.,
specified
nested
                                      = .false., .true., .true.,
/
&namelist_quilt
nio_tasks_per_group = 0,
nio_groups = 1,
/
&grib2
 /
```